일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- jupytertheme
- lol api
- Git
- overfitting
- ubuntu
- 회귀분석
- 나는리뷰어다2021
- 한빛미디어
- 주피터노트북 커널 목록
- deeplearning
- 주피터노트북 커널 제거
- Machine Learning
- GitHub
- 데이터분석
- feature scaling
- 경사하강법
- 딥러닝
- pandas
- MySQL
- Udacity
- 주피터노트북 커널 추가
- 주피터노트북
- deep learning
- 주피터 노트북 테마
- random forest
- Python
- 모두를 위한 딥러닝
- 주피터테마
- Linear Regression
- regression
- Today
- Total
목록딥러닝 (14)
유승훈

우리는 지난번에 Logistic Regression에 대해서 배웠습니다. 간단하게 이야기하면, 모델을 학습하는 것이 두 Class를 가장 잘 구분하는 선을 찾는 것이었습니다. 여기서는 두개의 Class, 즉 이진분류였습니다. 그런데 이것을 Multinomial, 다중분류에도 활용하면 어떻게 될까요? 각 Classifier는 표현하자면 담당하는 Class가 아닌 나머지는 모두 같은 Class로 생각한다고 볼 수 있습니다. 각각의 Class인지 아닌지만을 구분하는 Classifier인 것입니다. 이러한 형태의 Classifier가 3개 있다면 계산이 복잡할 수 있습니다. Class가 늘어날수록 계산이 더 복잡해집니다. 그래서 분리되어 있는 Weight Vector들을 하나의 Matrix로 만든다고 생각하면,..

지난 챕터까지 선형 회귀분석에 대해 공부했습니다. 일반적인 선형 회귀분석은 회귀문제, 즉 연속형 변수를 예측하는데 사용하는 알고리즘입니다. 하지만 성공/실패, 합격/불합격, 남성/여성 등과 같이 두 Class 중 하나로 예측하는 이진분류 문제를 푸는데 회귀분석의 한 종류인 Logistic Regression을 사용할 수 있습니다. A와 B 둘 중 하나로 분류하는 Task가 이진분류, Binary Classification입니다. 시험에서는 통과/불통과, 스팸에서는 스팸/비스팸 등 두 가지 Class를 분류합니다. X변수들로 Y가 두 Class 중 어떤 것에 속할지를 예측하는 것입니다. Class가 두개가 아니라 3개, 4개로 더 많아지면 Multi-class Classification이라고 합니다. 전에..

이전에는 독립변수와 종속변수가 각각 하나씩인 Linear Regression에 대해서 살펴보았습니다. 이번에는 독립변수가 여러개인 다중회귀분석, Multi Variable Linear Regression에 대해서 살펴보겠습니다. 이전 강의에서는 공부시간(X)으로 시험점수(Y)를 설명하고자 했습니다. 하지만 시험점수는 공부시간 외에도 수업에서의 집중도, 교수님에 대한 이해, 수업의 분야, 스타일 등 여러 요소가 영향을 미칠 수 있습니다. 실제로 하나의 독립변수보다 여러개의 독립변수로 예측하는 것이 더 좋은 성능을 보입니다. 변수가 하나일때, 우리가 썼던 가설이 변수가 여러개가 되면 어떻게 될까요? 위와 같이 변수가 늘어난 만큼 가중치의 개수도 늘어납니다. Cost Function에는 바뀐 가설이 들어온 것..

본 글은 모두를 위한 딥러닝 강의를 듣고 작성한 글입니다. 앞선 강의에서 Linear Regression의 기본 개념에 대해 살펴보았습니다. 간단하게 Review하면, 이 Cost, 즉 비용이 적을수록 우리의 Line, Hypothesis가 실제 데이터를 잘 대변하고 있다고 볼 수 있습니다. Linear Regression의 목적은 Cost를 최소화하는 W와 b를 찾는 것입니다. 우리가 썼던 앞선 가정에서 y절편인 b를 생략해봅시다. 이런 식의 가정입니다. 사실 나중에 `W`가 Matrix가 되면, b를 그 안에 집어넣을 수 있으니 크게 구조가 달라진 것은 아닙니다. 주어진 데이터를 기반으로 Cost를 계산하면, W=0, Cost=4.67 W=1, Cost=0 W=2, Cost=4.67 W=3, Cost..